

Fabry Disease

A guide to understanding this rare lysosomal disease

Understanding Fabry disease

Fabry disease is a rare, X-linked lysosomal disorder that can affect both males and females.^{1,2} Fabry disease is caused by mutations (variants) in the galactosidase alpha gene (*GLA*), resulting in an absent or functionally deficient alpha-galactosidase A (alpha-Gal A) enzyme.² Functional deficiency may occur when improper protein folding reduces the stability of alpha-Gal A, often leading to enzyme degradation in the endoplasmic reticulum prior to normal transport to the lysosome.³

In healthy individuals, alpha-Gal A breaks down globotriaosylceramide (GL-3) and diseasecausing substances. However, when alpha-Gal A is absent or deficient, GL-3 accumulates in the lysosome, leading to cellular damage within affected parts of the individual's body. This in turn causes the various pathologies seen in Fabry disease.^{3,4}

Clinical progression and burden of Fabry disease over time

The accumulation of GL-3 begins in utero and progresses throughout life.^{5,6}

Adapted with permission from Eng CM et al. J Inherit Metab Dis. 2007;30(2):184-192.7

The X-linked inheritance pattern of Fabry disease¹

The red X indicates an affected X chromosome.

An individual **with** a gene mutation that causes Fabry disease

An individual **without** a gene mutation that causes Fabry disease

INHERITANCE THROUGH AN AFFECTED MOTHER³

There is a 50% chance that an affected mother with a heterozygous genotype will pass the mutated gene to any of her children.

INHERITANCE THROUGH AN AFFECTED FATHER³

The daughter will always inherit the mutated gene from her father.

The son will not inherit the mutated gene from his father.

As a progressive, multisystemic disease, Fabry disease can¹:

- Have a devastating impact on people's lives
- Have a wide spectrum of symptoms
- Present differently in each affected individual
- Prove to be a significant burden regardless of presentation

In families affected by Fabry disease, targeted mutational analysis is important as it can be used to diagnose at-risk individuals who may not yet exhibit the phenotypic characteristics of the disease.⁸

Diagnosing Fabry disease

Fabry disease diagnosis is challenging, as symptoms are diverse, varied, and affect multiple organs^{3,9}

While Fabry disease is considered "rare," many of its signs and symptoms are seen with more common disorders. As a result of the multiorgan pathology often seen in patients with Fabry disease and the number of conditions that mimic the signs and symptoms of the disease, diagnosis may be difficult.^{3,9}

The road to a Fabry disease diagnosis can be long and difficult

It is estimated that patients visit an average of 10 different specialists before a Fabry disease diagnosis is confirmed, leading to a delay of ~15 years in men and women from the onset of first symptoms to diagnosis.^{10,11}

GLA gene sequencing confirms a diagnosis of Fabry disease¹⁰

In addition, gene sequencing helps:

- Establish the disease phenotype¹²
- Provide additional information regarding disease prognosis and treatment¹³
- Permit the testing of at-risk family members¹²

NOTE: In males with the suspected classic phenotype, an absence or low levels of alpha-Gal A activity in blood cells or dried blood spots is sufficient to make the diagnosis. However, *GLA* gene sequencing is required for women.¹⁰

The patient's disease phenotype and genetic variant should inform treatment decisions.12

Onset, symptoms, and progression in Fabry disease

Highly variable but progressive course

Fabry disease symptoms are often classified into classic and nonclassic phenotypes. However, Fabry disease is most appropriately considered as having a heterogeneous, progressive spectrum of disease.³ Because inheritance is X-linked, the disease course is especially variable in females, in whom one of the two copies of the *GLA* gene is randomly inactivated in different tissues.³

Fabry disease presents along a spectrum^{3,14}

predominantly in those organ systems³

Patients with Fabry disease demonstrate wide variability with regard to age at presentation, symptoms, disease severity, and predictability of disease course^{3,14}

Signs and symptoms of Fabry disease

As a progressive, multisystem, multiorgan disease, Fabry disease has a wide spectrum of symptoms.¹⁵ Although Fabry disease has different phenotypes and presents differently in each individual, it can prove to be a significant burden regardless of presentation.¹

How Fabry disease symptoms can affect organ systems

Organ system	Symptoms	
Renal ³	 Podocyte damage, glomerular sclerosis Proteinuria Decreased renal function Kidney failure 	Kidney biopsy showing GL-3 deposition in podocytes. Image courtesy of Dr. Anthony Chang.
Cardiovascular ³	 Irregular heartbeat Left ventricular hypertrophy (LVH) Heart failure Myocardial infarction (MI) 	Cardiac MRI showing left ventricular hypertrophy. Image from Germain DP. Orphanet J Rare Dis. 2010;5:30. ³
Central nervous system and neurologic ³	 Acute pain crises, especially in hands/feet, which may be severe Chronic neuropathic pain Hypohidrosis, leading to intolerance of heat and exercise Stroke/transient ischemic attack (TIA) 	Axial brain MRI section showing stroke of the left cerebellar hemisphere. Image from Germain DP. Orphanet J Rare Dis. 2010;5:30. ³
Neuropsychiatric ^{3,16}	DepressionAnxiety	

Organ system	Symptoms	
Dermatologic ³	• Angiokeratoma	Angiokeratomas around the belly button of a patient with Fabry disease. Image used with permission from Desnick RJ et al. Ann Intern Med. 2003;138(4):338-346. ¹
Ophthalmologic ³	 Corneal whorling (cornea verticillata) Cataracts 	Cornea of a female patient heterozygote for Fabry disease. Image from Germain DP. Orphanet J Rare Dis. 2010;5:30. ³
Pulmonary ³	Dyspnea with exertionAirway obstruction	
Gastrointestinal ³	 Nausea, vomiting, cramping, diarrhea Pain/bloating after eating; early fullness Difficulty gaining weight 	
Ear, nose, throat ³	 Hearing loss, tinnitus, vertigo 	

Impact on organ systems

As Fabry disease progresses, major organ system dysfunction may worsen. This may lead to a shortened lifespan and death, most often from cardiovascular complications, cerebrovascular complications, or renal failure.^{15,17}

Fabry disease at a glance

- Fabry disease is a rare, X-linked lysosomal disorder that can affect both males and females^{1,2}
- Diagnosis is challenging, as symptoms are diverse, varied, and affect multiple organs^{3,9}
- The course of Fabry disease is highly variable, but it is progressive regardless of sex or age at presentation^{3,14}
- Fabry disease has a wide spectrum of symptoms^{3,15} and presents differently in each individual, proving to be a significant burden regardless of presentation¹

References: 1. Desnick RJ, Brady R, Barranger J, et al. Fabry disease, an under-recognized multisystemic disorder: expert recommendations for diagnosis, management, and enzyme replacement therapy. Ann Intern Med. 2003;138(4):338-346. 2. Filoni C, Caciotti A, Carraresi L, et al. Functional studies of new GLA gene mutations leading to conformational Fabry disease. Biochim Biophys Acta. 2010;1802(2):247-252. 3. Germain DP. Fabry disease. Orphanet J Rare Dis. 2010;5:30. 4. Tuttolomondo A, Simonetta I, Duro G, et al. Inter-familial and intra-familial phenotypic variability in three Sicilian families with Anderson-Fabry disease. Oncotarget. 2017;8(37):61415-61424. 5. Vedder AC, Strijland A, vd Bergh Weerman MA, et al. Manifestations of Fabry disease in placental tissue. J Inherit Metab Dis. 2006;29(1):106-111. 6. Thurberg BL, Politei JM. Histologic abnormalities of placental tissues in Fabry disease: a case report and review of the literature. Hum Pathol. 2012;43(4):610-614. 7. Eng CM, Fletcher J, Wilcox WR, et al. Fabry disease: baseline medical characteristics of a cohort of 1765 males and females in the Fabry Registry. J Inherit Metab Dis. 2007;30(2):184-192. 8. Yousef Z, Elliott PM, Cecchi F, et al. Left ventricular hypertrophy in Fabry disease: a practical approach to diagnosis. Eur Heart J. 2013;34(11):802-808. 9. Hoffmann B, Mayatepek E. Fabry disease-often seen, rarely diagnosed. *Dtsch Arztebl Int.* 2009;106(26):440-447. **10.** Rozenfeld PA. Fabry disease: treatment and diagnosis. *IUBMB Life.* 2009;61(11):1043-1050. **11.** Wilcox WR, Oliveira JP, Hopkin RJ, et al. Females with Fabry disease frequently have major organ involvement: lessons from the Fabry Registry. Mol Genet Metab. 2008;93(2):112-128. 12. Ortiz A, Germain DP, Desnick RJ, et al. Fabry disease revisited: Management and treatment recommendations for adult patients. Mol Genet Metab. 2018;123(4): 416-427. 13. Gal A, Hughes DA, Winchester B. Toward a consensus in the laboratory diagnostics of Fabry disease - recommendations of a European expert group. J Inherit Metab Dis. 2011;34(2):509-514. 14. El-Abassi R, Singhal D, England JD. Fabry's disease. J Neurol Sci. 2014;344(1-2):5-19. 15. Mehta A, Beck M, Eyskens F, et al. Fabry disease: a review of current management strategies. QJM. 2010;103(9): 641-659. 16. Laney DA, Gruskin DJ, Fernhoff PM, et al. Social-adaptive and psychological functioning of patients affected by Fabry disease. J Inherit Metab Dis. 2010;33(suppl 3):S73-S81. 17. Mehta A, Clarke JTR, Giugliani R, et al, for the FOS Investigators. Natural course of Fabry disease: changing pattern of death in FOS – Fabry Outcome Study. J Med Genet. 2009;46(8):548-552.

